
International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

To Detect Intrusions in Multitier Web
Applications by using Double Guard Approach.

K.Karthika, K.Sripriyadevi

Abstract-Internet services and applications have become an inextricable part of daily life, enabling communication and the Management of personal
information from anywhere. To accommodate this increase in application and data complexity, web services have moved to a multitiered design wherein
the webserver runs the application front-end logic and data are outsourced to a database or file server. In this paper, we present Double Guard, an IDS
system that models the network behavior of user sessions across both the front-end webserver and the back-end database. By monitoring both web and
subsequent database requests, we are able to ferret out attacks that independent IDS would not be able to identify. Furthermore, we quantify the
limitations of any multitier IDS in terms of training sessions and functionality coverage. We implemented DoubleGuard using an Apache webserver with
MySQL and lightweight virtualization. We then collected and processed real-world traffic over a 15-day period of system deployment in both dynamic
and static web applications. Finally, using DoubleGuard, we were able to expose a wide range of attacks with 100 percent accuracy while maintaining 0
percent false positives for static web services and 0.6 percent false positives for dynamic web services.

Keywords -Anomaly detection, virtualization, multitier web application..

1. Introduction

WEB-DELIVERED services and applications have
increased in both popularity and complexity over the past
few years. Daily tasks, such as banking, travel, and social
networking, are all done via the web. Such services
typically employ a webserver front end that runs the
application user interface logic, as well as a back-end server
that consists of a database or file server. The attacks have
recently become more diverse, as attention has shifted from
attacking the front end to exploiting vulnerabilities of the
web applications in order to corrupt the back-end database
system (e.g., SQL injection attacks). A plethora of Intrusion
Detection Systems (IDSs) currently examine network
packets individually within both the webserver and the
database system. In multitiered architectures, the back-end
database server is often protected behind a firewall while
the webservers are remotely accessible over the Internet.
The IDSs cannot detect cases wherein normal traffic is used
to attack the webserver and the database server.
Unfortunately, within the current multithreaded webserver
architecture, it is not feasible to detect or profile such causal
mapping between webserver traffic and DB server traffic
since traffic cannot be clearly attributed to user sessions.

In this paper, we present DoubleGuard, a system
used to detect attacks in multitiered web services. Our
approach can create normality models of isolated user
sessions that include both the web front-end (HTTP) and
back-end (File or SQL)network transactions. To achieve
this, we employ a lightweight virtualization technique to
assign each user’s web session to a dedicated container, an
isolated virtual computing environment. We use the
container ID to accurately associate the web request with
the subsequent DB queries. Thus, DoubleGuard can build a
causal mapping profile by taking both the webserver and
DB traffic into account. We have implemented our

DoubleGuard container architecture using OpenVZ and
performance testing shows that it has reasonable
performance overhead and is practical for most web
applications. When the request rate is moderate (e.g., under
110 requests per second), there is almost no overhead in
comparison to an unprotected vanilla system. The
container-based web architecture not only fosters the
profiling of causal mapping, but it also provides an
isolation that prevents future session-hijacking attacks.
Within a lightweight virtualization environment, we ran
many copies of the webserver instances in different
containers so that each one was isolated from the rest.
Asephemeral containers can be easily instantiated and
destroyed, we assigned each client session a dedicated
container so that, even when an attacker may be able to
compromise a single session, the damage is confined to the
compromised session; other user sessions remain
unaffected by it. Using our prototype, we show that, for
websites that do not permit content modification from
users, there is a direct causal relationship between the
requests received by the front-end webserver and those
generated for the database back end. Our experimental
evaluation, using real-world network traffic obtained from
the web and database requests of a large center, showed
that we were able to extract 100 percent of functionality
mapping by using as few as 35 sessions in the training
phase. it does not depend on content changes if those
changes can be performed through a controlled
environment and retrofitted into the training model. We
refer to such sites as “static” because, though they do
change over time, they do so in a controlled fashion that
allows the changes to propagate to the sites’ normality
models. In addition to this static website case, there are web
services that permit persistent back-end data modifications.
These services, which we call dynamic, allow HTTP

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 2
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

requests to include parameters that are variable and
depend on user input. Sometimes, the same application’s
primitive functionality(i.e., accessing a table) can be
triggered by many different webpages. To address this
challenge while building a mapping model
for dynamic webpages, we first generated an individual
training model for the basic operations provided by the
web services. We demonstrate that this approach works
well in practice by using traffic from a live blog where we
progressively modeled nine operations. Our results show
that we were able to identify all attacks, covering more than
99 percent of the normal traffic as the training model is
refined.

2. Related work.
A network Intrusion Detection System can be classified into
two types: anomaly detection and misuse detection.
Anomaly detection first requires the IDS to define and
characterize. However, we have found that DoubleGuard
can detect SQL injection attacks by taking the structures of
web requests and database queries without looking into the
values of input parameters (i.e., no input validation at the
websever). the correct and acceptable static form and
dynamic behavior of the system, which can then be used to
detect abnormal changes or anomalous behaviors. Intrusion
alerts correlation provides a collection of components that
transform intrusion detection sensor alerts into succinct
intrusion reports in order to reduce the number of
replicated alerts, false positives, and nonrelevant positives.
DoubleGuard differs from this type of approach that
correlates alerts from independent IDSs. Rather, Double-
Guard operates on multiple feeds of network traffic using a
single IDS that looks across sessions to produce an alert
without correlating or summarizing the alerts produced by
other independent IDSs. DoubleGuard does not have a
limitation as it uses the container ID for each session to
causally map the related events, whether they be
concurrent or not. The system proposed in composes both
web IDS and database IDS to achieve more accurate
detection, and it also uses a reverse HTTP proxy to
maintain a reduced level of service in the presence of false
positives. However, we found that certain types of attack
utilize normal traffics and cannot be detected by either the
web IDS or the database IDS. In DoubleGuard, the new
container-based webserver architecture enables us to
separate the different information flows by each session.
For the static webpage, our DoubleGuard approach does
not require application logic for building a model.
However, as we will discuss, although we do not require
the full application logic for dynamic web services, we do
need to know the basic user operations in order to model

normal behavior. DoubleGuard focuses on modeling the
mapping patterns between HTTP requests and DB queries
to detect malicious user sessions. Building the mapping
model in DoubleGuard would require a large number of
isolated web stack instances so that mapping patterns
would appear across different session instances.

3. Threat model and system architecture

We initially set up our threat model to include our
assumptions and the types of attacks we are aiming to
protect against. The attackers can bypass the webserver to
directly attack the database server. We assume that the
attacks can neither be detected nor prevented by the current
webserver IDS, that attackers may take over the webserver
after the attack, and that afterward they can obtain full
control of the webserver to launch subsequent attacks. In
addition, we are analyzing only network traffic that reaches
the webserver and database. We assume that no attack
would occur during the training phase and model
building.
3.1 Architecture and Confinement

In our design, we make use of lightweight process
containers, referred to as “containers,” as ephemeral,
disposable servers for client sessions. It is possible to
initialize thousands of containers on a single physical
machine, and these virtualized containers can be discarded,
reverted, or quickly reinitialized to serve new sessions.

Fig 1. Classic three-tier model. The webserver acts as the
front end, with the file and database servers as the
content storage back end.
In the classic three-tier model database side, we are unable
to tell which transaction corresponds to which client
request. The communication between the webserver and
the database server is not separated, and we can hardly
understand the relationships
among them.

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 3
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

3.2 Building the Normality Model

This container-based and session-separated webserver
architecture not only enhances the security performances
but also provides us with the isolated information flows
that are separated in each container session. It allows us to
identify the mapping between the webserver requests and
the subsequent DB queries, and to utilize such a mapping
model to detect abnormal behaviors on a session/client
level.

Fig.2. Webserver instances running in containers.

Once we build the mapping model, it can be used to
detect abnormal behaviors. Both the web request and the
database queries within each session should be in
accordance with the model. If there exists any request or
query that violates the normality model within a session,
then the session will be treated as a possible attack.

3.3 Attack Scenarios

Our system is effective at capturing the following types of
attacks:

3.3.1 Privilege Escalation Attack

3.3.2 Hijack Future Session Attack

3.3.3 Injection Attack
Attacks such as SQL injection do not require compromising
the webserver. Attackers can use existing vulnerabilities in
the webserver logic to inject the data or string content that
contains the exploits and then use the webserver to relay
these exploits to attack the back-end database
.
3.3.4 Direct DB Attack
It is possible for an attacker to bypass the webserver or
firewalls and connect directly to the database. An attacker
could also have already taken over the webserver and be
submitting such queries from the webserver without
sending web requests. Without matched web requests for
such queries, a webserver IDS could detect.

4.MODELING DETERMINISTIC MAPPING AND
PATTERNS

Due to their diverse functionality, different web
applications exhibit different characteristics. Many websites
serve only static content, which is updated and often
managed by a Content Management System (CMS).This
creates tremendous challenges for IDS system training
because the HTTP requests can contain variables in the
passed parameters. DoubleGuard normalizes the variable
values in both HTTP requests and database queries,
preserving the structures of the requests and queries. To
achieve this, DoubleGuard substitutes the actual values of
the variables with symbolic values.

4.1 Inferring Mapping Relations

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 4
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

we classify the four possible mapping patterns. Since the
request is at the origin of the data flow, we treat each
request as the mapping source. In other words, the
mappings in the model are always in the form of one
request to a query set rm ! Qn.

4.1.1 Deterministic Mapping
This is the most common and perfectly matched
pattern.That is to say that web request rm appears in all
traffic with the SQL queries set Qn. The mapping pattern is
then rm ! Qn . For any session in the testing phase with the
request rm, the absence of a query set Qn matching the
request indicates a possible intrusion.

4.1.2 Empty Query Set
In special cases, the SQL query set may be the empty set.
This implies that the web request neither causes nor
generates any database queries.
4.1.3 No Matched Request
In some cases, the webserver may periodically submit
queries to the database server in order to conduct some
scheduled tasks, such as cron jobs for archiving or backup.

4.1.4 Nondeterministic Mapping
The same web request may result in different SQL query
sets based on input parameters or the status of the webpage
at the time the web request is received. In fact, these
different SQL query sets do not appear randomly, and there
exists a candidate pool of query sets (e.g., fQn;Qp;Qq . . .g).
Therefore, it is difficult to identify traffic that matches this
pattern. This happens only within dynamic websites, such
as blogs or forum sites.

Fig. 3. Overall representation of mapping patterns.

4.2 Modeling for Static Websites
We can easily classify the traffic collected by sensors into
three patterns in order to build the mapping model.

Algorithm. Static Model Building Algorithm
Require: Training Data set, Threshold t
Ensure: The Mapping Model for static website
 for each session separated traffic Ti do
 Get different HTTP requests r and DB queries q in
 this session
 for each different r do
 if r is a request to static file then
 Add r into set EQS
 else
 if r is not in set REQ then
 Add r into REQ
 Append session ID i to the set ARr with r as
 the key
 for each different q do
 if q is not in set SQL then
 Add q into SQL
 Append session ID i to the set AQq with q as the
 key
 for each distinct HTTP request r in REQ do
 for each distinct DB query q in SQL do
 Compare the set ARr with the set AQq
 if ARr = AQq and Cardinality(ARr) > t then
 Found a Deterministic mapping from r to q
 Add q into mapping model set MSr of r
 Mark q in set SQL
 else
 Need more training sessions
 return False
 for each DB query q in SQL do
 if q is not marked then
 Add q into set NMR
 for each HTTP request r in REQ do
 if r has no deterministic mapping model then
 Add r into set EQS
 return True

4.3 Testing for Static Websites
The testing phase algorithm is as follows:
1. If the rule for the request is Deterministic Mapping r -> Q
, we test whether Q is a subset of a query set of the session.
If so, this request is valid, and we mark the queries in Q.
Otherwise, a violation is detected and considered to be
abnormal, and the session will be marked as suspicious.
2. If the rule is Empty Query Set r then the request is not
considered to be abnormal, and we do not mark any
database queries. No intrusion will be reported.
3. For the remaining unmarked database queries, we
check to see if they are in the set NMR. If so, we mark the
query as such.
4. Any untested web request or unmarked database

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 5
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

query is considered to be abnormal. If either exists
within a session, then that session will be marked as
suspicious. In our implementation and experimenting of
the static testing website, the mapping model contained the
Deterministic Mappings and Empty Query Set patterns
without the No Matched Request pattern. This is commonly
the case for static websites.

4.4 Modeling of Dynamic Patterns.
The algorithm for extracting mapping patterns in
static pages no longer worked for the dynamic pages, we
created another training method to build the model. First,
we tried to categorize all of the potential single (atomic)
operations on the webpages. For instance, the common
possible operations for users on a blog website may include
reading an article, posting a new article, leaving a
comment, visiting the next page, etc. All of the operations
that appear within one session are permutations of these
operations. If we could build a mapping model for each of
these basic operations, then we could compare web
requests to determine the basic operations of the session
and obtain the most likely set of queries mapped from these
operations. If these single operation models could not cover
all of the requests and queries in a session, then this would
indicate a possible intrusion. By placing each rm, or the set
of related requests Rm, in different sessions with many
different possible inputs, we obtain as many candidate
query sets fQn, Qp, Qq . . .g as possible. We then establish
one operation mapping model Rm ! Qm (Qm =Qn [Qp [Qq
[. . .), wherein Rm is the set of the web requests for that
single operation and Qm includes the possible queries
triggered by that operation.

4.5 Detection for Dynamic Websites
Once we build the separate single operation models, they
can be used to detect abnormal sessions. We then take the
entire corresponding query sets in these models to form the
set CQS. For the testing session i, the set of DB queries Qi
should be a subset of the CQS. Otherwise, we would find
some unmatched queries. For the web requests in Ri, each
should either match at least one request in the operation
model or be in the set EQS. If any unmatched web request
remains, this indicates that the session has violated the
mapping model. The model of two single operations such
as Reading an article and Writing an Article. The mapping
models are READ RQ and WRITE WQ, and we use them
to test a given session i. For all the requests in the session,
we then find that each of them either belongs to request set
READ or WRITE. (You can ignore set EQS here.) This
means that there are only two basic operations in the
session, though they may appear as any of their

permutations. Therefore, the query set Qi should be a
subset of RQ WQ, which is CQS.

Fig. 4. The overall architecture of our prototype.

5. Performance Evaluation
We implemented a prototype of DoubleGuard using a
webserver with a back-end DB. We also set up two testing
websites, one static and the other dynamic. To evaluate the
detection results for our system, we analyzed four classes of
attacks.
5.1 Implementation
In our prototype, we chose to assign each user session into
a different container; however, this was a design decision.
we could maintain a large number of parallel-running
Apache instances similar to the Apache threads that the
server would maintain in the scenario without containers. If
a session timed out, the Apache instance was terminated
along with its container. In our prototype implementation,
we used a 60-minute timeout due to resource constraints of
our test server.

Static Website Model in Training Phase
For the static website, we used to build the mapping
model, and we found that only the Deterministic Mapping
and the Empty Query Set Mapping patterns appear in the
training sessions. We expected that the No Matched
Request pattern would appear if the web application had a
cron job that contacts back-end database server; however,
our testing website did not have such a cron job. We first
collected 338 real user sessions for a training data set before
making the website public so that there was no attack
during the training phase. Based on this training process
accuracy graph, we can determine a proper time to stop the
training.

Dynamic Modeling Detection Rates

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 6
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

We obtained 329 real user traffic sessions from the blog
under daily workloads. During this seven-day phase, we
made our website available only to internal users to ensure
that no attacks would occur then generated 20 attack traffic
sessions mixed with these legitimate sessions, and the
mixed traffic was used for
detection.

Fig. 5. Time for starting a new container.

we model nine basic operations, we can reach 100 percent
Sensitivity with six percent False Positive rate. In the case of
23 basic operations, we achieve the False Positive rate of 0.6
percent. By Using Double guard approach we also avoid
the following attacks.

 Privilege Escalation Attack
 Hijack Future Session Attack (Webserver-Aimed

Attack)
 Injection Attack.

Fig.6. ROC curves for dynamic models.

6 CONCLUSION
We presented an intrusion detection system that builds
models of normal behavior for multitiered web applications
from both front-end web (HTTP) requests and back-end
database (SQL) queries. Unlike previous approaches that
correlated or summarized alerts generated by independent
IDSs, DoubleGuard forms a container-based IDS with
multiple input streams to produce alerts. We have shown
that such correlation of input streams provides a better
characterization of the system for anomaly detection
because the intrusion sensor has a more precise normality
model that detects a wider range of threats.
Weachieved this by isolating the flow of information from
each webserver session with a lightweight virtualization.
Furthermore, we quantified the detection accuracy of our
approach when we attempted to model static and dynamic
web requests with the back-end file system and database
queries. For static websites, we built a well-correlated
model, which our experiments proved to be effective at
detecting different types of attacks. Moreover, we showed
that this held true for dynamic requests where both
retrieval of information and updates to the back-end
database occur using the webserver front end. When we
deployed our prototype on a system that employed Apache
webserver, a blog application, and a MySQL back end,
DoubleGuard was able to identify a wide range of attacks
with minimal false positives. As expected, the number of
false positives depended on the size and coverage of the
training sessions we used. Finally, for dynamic web
applications, we reduced the false positives to 0.6 percent.

REFERENCES
[1]U. Shankar and V. Paxson, “Active Mapping: Resisting
NIDS Evasion Without Altering Traffic,” Proc. IEEE Symp.
Security and Privacy, 2003.
[2]T.H. Ptacek and T.N. Newsham. Insertion, Evasion and
Denial of Service: Eluding Network Intrusion Detection
Technical report, Secure Networks, January 1998.
[3] M. Roesch. Snort - Lightweight Intrusion Detection for
Networks. In Proceedings of the USENIX LISA ’99 Conference,
November 1999.
[4]K. Kendall, “A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems,” master’s thesis,
MIT, June 1999.
[5] G.H. Kim and E.H. Spafford, “The Design and
Implementation of Tripwire: A File System Integrity
Checker,” technical report,Purdue Univ., Nov. 1993.

International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 7
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

[6] C. Ko, M. Ruschitzka, and K. Levitt, “Execution
Monitoring of Security-Critical Programs in Distributed
Systems: A Specification-
[7] Sun Microsystems, Inc. Installing, Administering, and
Using the Basic Security Module. 2550 Garcia Ave., Mountain
View, CA 94043, December 1991.
[8]“Five Common Web Application
Vulnerabilities,”http://www.symantec.com/connect/articles
/five-common-web-application vulnerabilities,2011.
[9] Snort—The Open Source Network Intrusion Detection
System, http://www.snort.org, 2004.
[10]S.J.Templeton and K. Levitt, “A Requires/Provides
Model for Computer Attacks,” Proc. New Security
Paradigms Workshop, pp. 31-38, Sept. 2000.
[11] SANS, “The Top Cyber Security Risks,”
http://www.sans.org/top-cyber-security-risks/,2011.
[12] National Vulnerability Database, “Vulnerability
SummaryforCVE-2010-4332,”
http://web.nvd.nist.gov/view/vuln/detail?vulnId= CVE-
2010-4332, 2011.
 [13] Lap Chung Lam and Tzi cker Chiueh. A general
dynamic information flow tracking framework for security
applications. In Annual Computer Security Applications
Conference (ACSAC), 2006.
[14] V. I. Levenshtein. Binary codes capable of correcting
deletions, insertions, and reversals. Soviet Physics Doklady,
10(707), 1966.
Based Approach,” Proc. 1997 IEEE Symp. Security and
Privacy, pp. 175-187, May 1997.

Author 1

Author 2

K.Karthika, Received B.E
(CSE) degree in 2010 from
Anna University Chennai
India .Received M.E(CSE)
degree in Karpagam
University, India. Currently
Working as Assistant
Professor in EASA college
of Enggineering and
Technology.coimbatore.

K.Sripriyadevi, received B.E
degree in 2010 from Anna
University Chennai India.
Currently pursuing M.E
degree in Computer Science
and Engineering in velalar
college of Engineering and
Technology.Erode.

